

Linked Lists
Part One

Outline for Today
● Linked Lists, Conceptually

● A different way to represent a sequence.
● Linked Lists, In Code

● Some cool new C++ tricks.

Linked Lists at a Glance

1 2 3137

● A linked list is a data structure for storing a
sequence of elements.

● Each element is stored separately from the rest.
● The elements are then chained together into a

sequence.
● The end of the list is marked with some special

indicator.

...an empty list,
or...

a single cell... ... that points at
another linked list.

A Linked List is Either...

quokka! pudu! dikdik!kudu!

Representing Linked Lists

a single cell... ... that points at
another linked list.

struct Cell {
 string value;
 Cell* next;
};

Hi Mom!

struct Cell {
 string value;
 Cell* next;
};

Cell* list = new Cell;

We just want a single cell,
not an array of cells. To
get the space we need,
we’ll just say new Cell.

Notice that list is still a
Cell*, a pointer to a cell.

It still says “look over
there for your Cell”

rather than “I’m a Cell!”

Yes, it’s confusing that C++
uses the same types to mean
“look over there for an array

of Cells” and “look over there
for a single Cell.”

list

value

next

struct Cell {
 string value;
 Cell* next;
};

Cell* list = new Cell;
list->value = "pudu!";

Because list is a pointer to
a Cell, we use the arrow
operator -> instead of the

dot operator.

Think of list->value as
saying “start at list,

follow an arrow, then pick
the value field.”pudu!

list

value

next

struct Cell {
 string value;
 Cell* next;
};

Cell* list = new Cell;
list->value = "pudu!";
list->next = new Cell;
list->next->value = "quokka!";
list->next->next = new Cell;
list->next->next->value = "dikdik!";
list->next->next->next = nullptr;

pudu!

list

quokka! dikdik!

C++ uses the nullptr
keyword to mean “a pointer

that doesn’t point at
anything.”

(Older code uses NULL instead
of nullptr; that’s also okay,

but we recommend nullptr.)

value value value

next next next

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked
list.

A Linked List is Either...

Measuring a Linked List

Printing a Linked List

Time-Out for Announcements!

Looking Ahead: Partners
● Assignment 6 (the one out this week) must

be completed individually.
● Assignments 7 and 8 may be done either

individually or with a partner.
● Your partner must be in the same section

as you.
● If you know someone you want to work

with but are not in their section, ping
Jonathan by Wednesday so we can make
the swap.

Tone Matrix Contest
● We’re holding a Tone Matrix contest, analogous to the

Recursive Drawing contest we ran earlier in the
quarter.

● Interested in entering?
● Record a video using your Tone Matrix program. Be creative!
● Post a link to the video on the EdStem thread set up for the

contest.
● Deadline to submit is next Monday, March 3 at

1:00PM.
● We’ll award a small number of prizes to popular entries.

This is 100% optional and has no bearing on your
course grade.

lecture = lecture->next;

Building a Linked List
(without hardcoding it)

Cleaning Up a Linked List

Endearing C++ Quirks
● If you allocate memory using the new[] operator (e.g.
new int[137]), you have to free it using the delete[]
operator.

delete[] ptr;

● If you allocate memory using the new operator (e.g.
new Cell), you have to free it using the delete
operator.

delete ptr;

● Make sure to use the proper deletion operation.
Mixing these up is like walking off the end of an
array or using an uninitialized pointer; it might
work, or it might instantly crash your program, etc.

Cleaning Up Memory
● To free a linked list, we can’t just do this:

delete list;

● Why not?

list

Quokka! Dikdik!

Pointers Into Lists
● When processing linked lists iteratively, it’s

common to introduce pointers that point to
cells in multiple spots in the list.

● This is particularly useful if we’re destroying
or rewiring existing lists.

quokka! dikdik!pudu!

list next

Your Action Items
● Read Chapter 12.1 – 12.3.

● There’s lots of useful information in there
about how to work with linked lists.

● Keep Working on Assignment 6
● If you’re following our suggested timetable,

you’ll have finished the Enumerations
Warmup and Linear Probing Warmup by now.
Aim to complete Implementing Linear
Probing by Wednesday if you can.

● As always, come talk to us if you have any
questions!

Next Time
● Pointers by Reference

● Getting a helping hand.
● Tail Pointers

● Harnessing multiple pointers into a list.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

